OPIOID-INDUCED NEUROTOXICITY*

Sriram Yennu MD, MS, FAAHPM Palliative Care, Rehabilitation and Integrative Medicine U.T. M.D. Anderson Cancer Center

Making Cancer History®

*Slide Deck courtesy Dept PRIM MDACC

PATIENT #1: MRS SMITH, 65 YRS, METASTATIC BREAST CANCER TO BONES

- Discharged from hospital after finishing XRT to T 9-11 spine (pain, epidural disease), and left hip (pathological #)
- •Pain located in left hip and mid-lower back
- Not candidate for surgery or further cancer therapies.
 Hospice advised but declined by patient/family

• Discharge medications:

- Morphine ER 60mg q 8h; Morphine IR 15mg, 2 tablets q 4 hrs prn; Hydorocodone 10/325mg, 1 tablet q 6 prn;
- Senna 3 BID; Metaclopramide 10mg every 6 hours; Zolpidem at bedtime

PATIENT #1: MRS SMITH, MET BREAST CANCER, CONTD.

- I week after discharge home:
 - ↑ pain, despite scheduled + 8 PRN 15mg daily ("doesnt work");
- Calls MD for ↑ pain meds. Pt does not want to come to the hospital as more fatigued, issues with mobility and long waits in EC/clinic
- Prescriptions mailed out:
 - Morphine ER ↑ from 60mg to 120mg q 8 hrs; morphine IR 30-45mg as needed; Alprozolam added as pt sounds anxious on phone at 0.5mg prn TID

QUESTION

Q.What is the most likely reason for uncontrolled pain?

- A. Progressive disease
- B. Tolerance to opioid analgesic effects
- C. Opioid toxicity
- D. Combination of events

PATIENT #1: MRS SMITH, MET BREAST CANCER, CONTD.

•3 days later:

 has pain now in both legs, further reduction in mobility and transfers; Patient increases morphine ER 120 to every 6 hours

•Next day:

 ↑ nausea, ↓oral intake, spending all day in bed, but not able to sleep more than 1 hour at time. Very restless. Family is very upset. Husband calls for referral to hospice

•Following day:

 Hospice nurse arrives, patient has "pain all over," 10" out of 10, has muscle jerking (1-2 every hour or so), more at night; Husband reports she is asking for her brother (deceased) who she says was in her room.

OPIOID INDUCED NEUROTOXOCITY (OIN)

A syndrome of neuropsychiatric toxicity

- Cognitive impairment
- Delirium
- Severe sedation
- Hallucinations
- Delirium
- Myoclonus
- Seizures
- Hyperalgesia (paradoxical pain)
- Each can occur alone, in combination, in any order
- Suspect OIN if any present in a patient taking opioids

PREDISPOSING FACTORS FOR OIN

- High opioid doses
- Prolonged opioid use
- Recent rapid dose escalation
- -Use of other psychoactive drugs- benzodiazeprine,
- Underlying brain disease or cognitive failure
- Dehydration
- Renal failure
- -Advanced age
- Prior episode of OIN

Thwaites et al. J Palliat Med 2004.

MECHANISM OF OPIOID-INDUCED NEUROTOXICITY

MECHANISM OF OPIOID INDUCED NEUROTOXICITY

Not fully understood

- Accumulation of excitatory non-analgesic opioid metabolites
- Accumulation of the parent opioid
- NMDA activation

POTENTIAL CONTRIBUTORS FOR OIN IN A TERMINAL ILL PATIENT.

INTER-INDIVIDUAL VARIABILITY IN OPIOID ANALGESIC AND SIDE-EFFECT RESPONSE

Attributed to:

- Several opioid receptor subtypes
 - Mu-receptor has many (~7) subtypes
- Subtle differences between opioids in binding to these various subtypes
- Genetic differences between pts in receptor sensitivity

> Trials of several opioids are often needed before finding one that provides an acceptable balance of analgesia and tolerability for an individual patient.

Pasternal GW Trends in Pharmacological Sciences, 2001;22: 67-70

OPIOID METABOLISM

• Most opioids metabolized in the liver, and renally excreted.

- ↑ accumulation of parent opioid and its metabolites
 - with high opioid doses; dehydration; renal failure.
 - metabolites may cause toxicity via non mu-receptor actions

MEPERIDINE (DEMEROL)

Meperidine metabolized to Normeperidine

- highly neurotoxic, and has half of analgesic potency as parent drug
- Normeperidine accumulation
 - irritability, seizures, myoclonus, tremors, and prolonged lethargy
 - may occurs in normal individuals and is worse in patients with renal dysfunction

• Meperidine should NOT be used in treating chronic pain

Pond SM, Clin Pharmacol Ther. 1981;30:183–188.

MAJOR MORPHINE METABOLITES

- Neuro-excitatory effects
- Hallucinations, delirium, allodynia, hyperalgesia, myclonus, seizures.
- Is not a mu-agonist;
- Naloxone does not reverse effects

- is a potent mu-agonist
 - Analgesic effects
 - ↑ mu-receptor sideeffects

SUMMARY OF OPIOID METABOLITES

Opioid	Key Enzyme	Major metabolites	
Morphine	UGT2B7	M3G and M6G	
Hydromorphone	UGT1A3, 2B7	H3G	
Oxycodone	CYP3A4, 2D6	Noroxycodone, oxymorphone	
Oxymorphone	UGT2B7	6-OH-oxymorphone, oxymorphone-3-glucuronide	
Fentanyl	CYP3A4	Norfentanyl	
Codeine	CYP3A4, 2D6	Morphine, C6G	
Hydrocodone	CYP3A4, 2D6	Hydromorphone, norhydrocodone	
Propoxyphene	CYP3A4	Norpropoxyphene	
Meperidine	CYP3A4, 2B6,2C19	Normeperidine	
Tramadol	CYP2D6	O-desmethyl tramadol	

Pain PARADOXICAL PAIN WITH OPIOID USE

> Allodynia:

Painful response to a stimulus that is normally not painful (such as light touch)

> Hyperalgesia:

Severe pain response to a stimulus that normally produces only mild pain response.

OPIOID-INDUCED HYPERALGESIA (OIH)

- Pain is usually
 - more severe than pre-existing pain
 - More diffuse
 - extends to other areas of distribution from the preexisting pain.
 - less defined in quality
 - Gets worse with increasing the opioid dose

Most of these present in patient example # I

OPIOID-INDUCED HYPERALGESIA (OIH)

Differentiate from

- $-\uparrow$ pain due to disease progression
- Opioid tolerance

Opioids usually increased in above two and associated with improvement, but would worsen OIH

Not always easy to distinguish OIH from above two

➢ If a trial of increasing opioids worsens pain, need to consider OIH

OPIOID TOLERANCE VS HYPERALGESIA

- Opioid Tolerance to analgesic effects
 - manifested by \uparrow opioid dose requirements to achieve the same degree of pain relief.
 - Decreased sensitivity of opioids
- Opioid induced Hyperalgesia:
 - \uparrow sensitivity to pain from painful and normal stimuli
 - increased sensitivity to pain
- May share similar mechanisms, but treatment different!
 - changes in NMDA receptors or descending modulatory pathways by mediators such as CCK)

HALLUCINATIONS

- Usually Visual or tactile
- A study found 47% of hospice inpatients had visual hallucination within the prior month.
 - Hallucinators were more likely to be on opioids
 - Hallucinations of a person standing by the bedside was the commonest type

Fountain A. Visual hallucinations: A prevalence study among hospice inpatients. Palliat Med 2001;15:19–25

TREATMENT OF OPIOID INDUCED NEUROTOXICITY

MANAGEMENT OF OPIOID INDUCED NEUROTOXICITY (OIN)

A. Prevention

- B. Treatment
 - Elimination of contributing etiology of OIN
 - Management of Pain in presence of OIN
 - Symptomatic management of OIN features

PREVENTION OF OPIOID INDUCED NEUROTOXICITY

PREVENTION OF OIN

- I. Evaluate and treat risk factors, as appropriate
- 2. Initiate and titrate opioids cautiously
- 3. Frequent Re-assessment for analgesic and adverse effects of opioids

PREVENTION OF OIN: EVALUATE FOR PRESENCE OF RISK FACTORS

– Able to maintain hydration?

- ? Nausea, bowel obstruction, anorexia, depression
- Underlying renal and liver function?
- Does patient have underlying brain disease, sepsis, or hypoxia
- Is patient on sedating medications
- Screening for cognitive impairment or delirium
 - Mini-mental State Examination (MMSE)
 - Memorial Delirium Assessment Scale (MDAS)
 - Nursing Delirium Screening Scale (NuDESC)

DELIRIUM SCREENING

Nursing Delirium Screening Scale (NuDESC)

- Validated observational
- 5-item scale (each scored from 0-2, max score 10)
 - Disorientation
 - Inappropriate behavior
 - Inappropriate communication
 - Illusions, or hallucinations
 - Psychomotor retardation
- Takes < 2 minutes to complete
- Can be used for screening & monitoring delirium severity.

PREVENTION OIN: MANAGEMENT OF RISK FACTORS FOR OIN

- Discontinue sedating medications
- Treatment of nausea, constipation, anorexia, depression, as appropriate

 \rightarrow to \uparrow fluid intake

- Treatment of hypoxia, infections, depending on clinical setting
- Hydration
 - Will patient benefit from parenteral hydration?

PREVENTION OIN: *INITIATE AND TITRATE OPIOIDS CAUTIOUSLY*

In opioid naïve patients:

- First start as needed low dose, short acting opioids every 2-4 hours
- In some, extended release opioids can be considered
- Fentanyl patches not recommended in opioid-naïve
- If renal failure, chose agents without active metabolites (methadone), or space out doses.

PREVENTION OIN: FREQUENT ASSESSMENT OF PAIN/SIDE-EFFECTS

• Monitor opioid use

- Use of scheduled and as needed opioids. Compliance

• Monitor pain and its characteristics

- ? pain features the same, improved or worse after opioids
- Is there diffuse "all over pain", does pain medication make the pain worse? Suspect opioid induced hyperalgesia
- Monitor side-effects in a systematic fashion
 - GI side-effects may interfere with fluid status; Rx as appropriate
 - CNS side-effects: Sedation, cognitive decline, delirium

(delirium scales: eg. NuDESC)

TREATMENT OF OIN

- Treat underlying etiology of OIN
 - Elimination of offending opioid and/or metabolites
 - Hydration to help elimination
 - May consider dose reduction if symptoms mild, and pain controlled
- Manage the pain
 - Patient still needs opioid for pain management
 - Chose alternate opioid should be selected
 - Alternatives options to decrease need for opioids
- Symptomatic management of OIN
 - Such as for agitated delirium

TREATMENT OF SPECIFIC OIN FEATURES *MYOCLONUS*

- If mild:
 - Observation alone may be appropriate. Opioid rotation if myoclonus more frequent, or if associated with other features of OIN

- If severe/frequent:
 - After opioid rotation, the following have been used: Baclofen, clonazepam, & anticonvulsants.
 - However, do not address the etiology of the problem
 - Risk for polypharmacy and new issues

TREATMENT OF SPECIFIC OIN FEATURES. DELIRIUM

Neuroleptics:

- Haloperidol most commonly used for agitation or mixed delirium
- Less sedating and fewer anti-cholinergic effects
- Atypical antipsychotics, such as olanzapine, risperidone, and quetiapine have been used for delirium
- Chlorpromazine if above not options/refractory; frequently causes hypotension

Benzodiazepines: not generally recommended (unless seizures)due to excessive sedation, increased confusion, and increased disinhibition with use

SUMMARY

- All opioids have potential of side-effects
- Recognize the syndrome of Opioid Induced Neurotoxicity
 - Myoclonus, Agitation Confusion
 - Pain "everywhere" not relieved/ exacerbated by opioids

• Recognize risk factors for OIN

- High opioid dose, rapid escalation of opioid
- Underlying renal, liver and brain impairments
- Dehydration

• Screen regularly for Opioid side-effects including OIN

• Treatment:

- Usually opioid rotation, treatment of contributing factors, hydration if feasible and consistent with care goals.
- Opioid reduction if none of above possible.

OPIOID ROTATION

Rationale:

- Uncontrolled pain
- Toxicity attributed to accumulation of offending opioid and its metabolite, so the treatment is stopping offending opioid
- Change in route
- Drug Interactions
 - -- New opioid is used to control pain

*de Stoutz et al. JPSM; 1995

- Retrospective study of 80 patients with OIN (Cognitive deterioration, hallucinations, myoclonus)
- Opioid rotation significantly improved symptoms and pain control in vast majority of patients
- New opioid dose was significantly lower than that thought to be equianalgesic

OPIOID ROTATION, CONT'D

Which opioid is best to switch to ?

- Toxicity is not believed to be a class effect so any alternate opioid may be chosen
- Dose of new opioid calculated from Equianalgesic Table
- Meperidine or propoxyphene NOT appropriate for chronic pain
- Switch to methadone may have advantages
 - No neuro-excitatory or active metabolites
 - Good oral bioavailability
 - Does not depend on renal excretion, so safer in presence of renal failure

INITIAL EQUIANALGESIC OPIOID DOSE CONVERSION TABLE

		Parenteral (IV/SC) Dose	Conversion Factor	
Opioid	Oral Dose		From IV/SC opioid to oral opioid	From oral opioid to oral morphine
Morphine	15 mg	6 mg	2.5	
Oxycodone	10 mg	NA	NA	1.5
Oxymorphone	5 mg	0.5 mg	10	3
Hydromorphone	3 mg	I.5 mg	2	5

Helps select the initial dose avoiding over- or under-dosing
Comparative values are approximate. Opioid dose should be further titrated based on the patient's response.

Equianalgesic Ratio Morphine to Methadone

Morphine equivalent Daily Dose (mg/d)	Initial dose ration (MSO4 : Methadone)
<30	2:1
30-99	4: I
100-299	8: I
300-499	12:1
500-999	15:1
<u>> 1000</u>	20:1

OPIOID ROTATION RECOMMENDED STEPS

Step I

> Calculate total daily (24 hr) dose of the offending opioid

<u>Step 2:</u>

> Calculate new opioid daily dose using Equianalgesic conversion table.

<u>Step 3:</u>

Decrease above new opioid dose by 25-50% for incomplete tolerance between opioids

<u>Step 4:</u>

Divide by number of scheduled doses/day. Breakthrough dose ~ 10-15% of daily dose every 1-2 hours as needed.

<u>Step 5:</u>

> Titrate new opioid until adequate analgesia is achieved.